Skip to main content

Electromechanical Engineering Technology - Automation

Program Learning Outcomes

This Seneca program has been validated by the Credential Validation Service as an Ontario College Credential as required by the Ministry of Training, Colleges and Universities.

As a graduate, you will be prepared to reliably demonstrate the ability to:

  • Fabricate and build electrical, electronic, and mechanical components and assemblies in accordance with operating standards, job requirements, and specifications.
  • Analyze, interpret, and produce electrical, electronic, and mechanical drawings and other related technical documents and graphics necessary for electromechanical design in compliance with industry standards.
  • Select and use a variety of troubleshooting techniques and equipment to assess, modify, maintain, and repair electromechanical circuits, equipment, processes, systems, and subsystems.
  • Modify, maintain, and repair electrical, electronic, and mechanical components, equipment, and systems to ensure that they function according to specifications and to optimize production.
  • Design and analyse mechanical components, processes, and systems by applying engineering principles and practices.
  • Design, analyze, build, select, commission, integrate, and troubleshoot a variety of industrial motor controls and data acquisition devices and systems, digital circuits, passive AC and DC circuits, active circuits and microprocessor-based systems.
  • Install and troubleshoot computer hardware and programming to support the electromechanical engineering environment.
  • Analyse, program, install, integrate, troubleshoot and diagnose automated systems including robotic systems.
  • Establish and maintain inventory, records, and documentation systems to meet organizational and industry standards and requirements.
  • Select and purchase electromechanical equipment, components, and systems that fulfill job requirements and functional specifications.
  • Specify, coordinate, and apply quality-control and quality-assurance programs and procedures to meet organizational standards and requirements.
  • Work in compliance with relevant industry standards, laws and regulations, codes, policies, and procedures.
  • Develop strategies for ongoing personal and professional development to enhance work performance and to remain current in the field and responsive to emergent technologies and national and international standards.
  • Contribute as an individual and a member of an electromechanical engineering team to the effective completion of tasks and projects.
  • Design and analyze electromechanical systems by interpreting fluid mechanics and the attributes and dynamics of fluid flow used in hydraulic and fluid power systems.
  • Contribute to project management through planning, implementation and evaluation of projects, and monitoring of resources, timelines, and expenditures as required.
  • Design, modify, and maintain automated electromechanical equipment, components, systems and subsystems to maintain applications including mechanical, electrical, and instrumentation.
  • Design electromechanical processes for electromechanical devices and components by applying automation/control systems concepts.